research

I am passionate about the science of language models: developing methods—also drawing from econometrics—to study the effect of training data on models’ behaviour. Currently, I focus on active learning, data valuation, and memorisation estimation. See the up-to-date list of publications on my Google Scholar page.

* denotes equal contribution.

Preprints

  1. Analysis of Augmenting Large Language Models with Tools in Zero-Shot
    Ne Luo, Aryo Pradipta Gema, Xuanli He, Emile Krieken,  Pietro Lesci, and Pasquale Minervini
    Under Review. Nov 2024.
  2. PolyPythias: Stability and Outliers across Fifty Language Model Pre-Training Runs
    Oskar van der Wal*Pietro Lesci*, Max Müller-Eberstein, Naomi Saphra, Hailey Schoelkopf, Willem Zuidema, and Stella Biderman
    Under Review. Nov 2024.

    Conference & Journal Articles

    2024

    1. EMNLP 2024
      Tending Towards Stability: Convergence Challenges in Small Language Models
      Richard Diehl Martinez,  Pietro Lesci, and Paula Buttery
      In Findings of the Association for Computational Linguistics: EMNLP 2024. Nov 2024.
    2. ACL 2024Best Paper Award
      Causal Estimation of Memorisation Profiles
      Pietro Lesci, Clara Meister, Thomas Hofmann, Andreas Vlachos, and Tiago Pimentel
      In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Aug 2024.
    3. NAACL 2024
      AnchorAL: Computationally Efficient Active Learning for Large and Imbalanced Datasets
      Pietro Lesci, and Andreas Vlachos
      In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Jun 2024.

    2023

    1. ACL 2023
      Diable: Efficient Dialogue State Tracking as Operations on Tables
      Pietro Lesci, Yoshinari Fujinuma, Momchil Hardalov, Chao Shang, Yassine Benajiba, and Lluis Marquez
      In Findings of the Association for Computational Linguistics: ACL 2023. Jul 2023.